Practice Problems
Problem: Max Distance with Two Pointers (C++)​
Problem Statement:​
Given an array arr[]
of N
positive integers, find the maximum value of j - i
such that arr[i] <= arr[j]
. The goal is to maximize the distance between the indices while ensuring the condition arr[i] <= arr[j]
holds.
Approach:​
This problem can be solved efficiently using the Two-Pointer Technique along with two auxiliary arrays:
LMin[]
: Stores the minimum value from the start of the array up to indexi
.RMax[]
: Stores the maximum value from indexj
to the end of the array.
Solution in C++:​
#include <iostream>
#include <vector>
#include <algorithm> // For std::max and std::min
using namespace std;
/* Utility Functions to get max and minimum of two integers */
int max(int x, int y) {
return x > y ? x : y;
}
int min(int x, int y) {
return x < y ? x : y;
}
/* For a given array arr[], returns the maximum j – i such that arr[j] >= arr[i] */
int maxIndexDiff(vector<int>& arr, int n) {
int maxDiff;
int i, j;
// Initialize auxiliary arrays
vector<int> LMin(n);
vector<int> RMax(n);
/* Construct LMin[] such that LMin[i] stores the minimum value
from (arr[0], arr[1], ... arr[i]) */
LMin[0] = arr[0];
for (i = 1; i < n; ++i)
LMin[i] = min(arr[i], LMin[i - 1]);
/* Construct RMax[] such that RMax[j] stores the maximum value
from (arr[j], arr[j+1], ... arr[n-1]) */
RMax[n - 1] = arr[n - 1];
for (j = n - 2; j >= 0; --j)
RMax[j] = max(arr[j], RMax[j + 1]);
/* Traverse both arrays from left to right to find optimum j - i */
i = 0, j = 0, maxDiff = -1;
while (j < n && i < n) {
if (LMin[i] <= RMax[j]) {
maxDiff = max(maxDiff, j - i);
j = j + 1;
} else {
i = i + 1;
}
}
return maxDiff;
}
/* Driver program to test above functions */
int main() {
vector<int> arr = { 9, 2, 3, 4, 5, 6, 7, 8, 18, 0 };
int n = arr.size();
int maxDiff = maxIndexDiff(arr, n);
cout << "\nMaximum distance: " << maxDiff << endl;
return 0;
}