Skip to main content

Graph Coloring Algorithm

Definition:​

Graph coloring is the process of assigning colors to the vertices of a graph such that no two adjacent vertices share the same color. The greedy algorithm for graph coloring assigns colors to vertices one by one, choosing the smallest available color at each step. While not always optimal, it offers an efficient solution for many graph coloring problems.

Characteristics:​

  • Greedy Approach:
    Graph coloring can be approached using a greedy algorithm. Vertices are colored one by one, assigning the smallest available color that doesn't violate the condition of adjacent vertices having the same color.

  • Non-Optimality:
    The greedy approach doesn’t always yield the minimum number of colors (chromatic number), but it provides a valid coloring in a time-efficient manner.

Steps Involved:​

  1. Sort Vertices by Degree:
    Optionally, vertices can be ordered by their degrees (highest degree first) to potentially improve the result.

  2. Assign Colors Greedily:
    Starting from the first vertex, assign the smallest available color that isn’t used by its adjacent vertices.

  3. Check and Color Remaining Vertices:
    Continue coloring each vertex using the same logic until all vertices are colored.

Problem Statement:​

Given a graph with n vertices, assign colors to the vertices such that no two adjacent vertices share the same color, while using the fewest number of colors.

Time Complexity:​

  • Best, Average, and Worst Case: O(n+m)O(n + m)
    Where n is the number of vertices and m is the number of edges. This is dominated by traversing vertices and their adjacent edges

Space Complexity:​

  • Space Complexity: O(n)O(n)
    Space is required to store the colors assigned to each vertex.

Example:​

Consider the following Graph:

  • Vertices: {A, B, C, D}
  • Edges: {(A, B), (A, C), (B, D), (C, D)}

Step-by-Step Execution:

  1. Assign color 1 to A:

  2. Assign color 2 to B (adjacent to A):

  3. Assign color 2 to C (non-adjacent to B but adjacent to A):

  4. Assign color 1 to D (adjacent to both B and C):

Total Colors Used: 2

C++ Implementation:​

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

// Function to perform greedy graph coloring
void greedyGraphColoring(vector<vector<int>>& graph, int V) {
// Array to store the color assigned to each vertex
vector<int> result(V, -1);

// Assign the first color to the first vertex
result[0] = 0;

// Temporary array to keep track of available colors for vertices
vector<bool> available(V, false);

// Assign colors to remaining vertices
for (int u = 1; u < V; u++) {
// Mark colors of adjacent vertices as unavailable
for (int i = 0; i < graph[u].size(); i++) {
int adjacent = graph[u][i];
if (result[adjacent] != -1) {
available[result[adjacent]] = true;
}
}

// Find the first available color
int cr;
for (cr = 0; cr < V; cr++) {
if (!available[cr]) {
break;
}
}

// Assign the found color to vertex u
result[u] = cr;

// Reset the available array for the next iteration
for (int i = 0; i < graph[u].size(); i++) {
int adjacent = graph[u][i];
if (result[adjacent] != -1) {
available[result[adjacent]] = false;
}
}
}

// Print the result
cout << "Vertex\tColor\n";
for (int u = 0; u < V; u++) {
cout << u << "\t" << result[u] << endl;
}
}

int main() {
// Number of vertices
int V = 4;

// Adjacency list representing the graph
vector<vector<int>> graph(V);

// Define the edges of the graph
graph[0].push_back(1); // Edge A-B
graph[0].push_back(2); // Edge A-C
graph[1].push_back(0); // Edge B-A
graph[1].push_back(3); // Edge B-D
graph[2].push_back(0); // Edge C-A
graph[2].push_back(3); // Edge C-D
graph[3].push_back(1); // Edge D-B
graph[3].push_back(2); // Edge D-C

// Call the greedy coloring function
greedyGraphColoring(graph, V);

return 0;
}

Java Implementation:​

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class GraphColoring {

// Function to perform greedy graph coloring
public static void greedyGraphColoring(List<List<Integer>> graph, int V) {
// Array to store the color assigned to each vertex
int[] result = new int[V];
Arrays.fill(result, -1);

// Assign the first color to the first vertex
result[0] = 0;

// Temporary array to keep track of available colors for vertices
boolean[] available = new boolean[V];

// Assign colors to remaining vertices
for (int u = 1; u < V; u++) {
// Mark colors of adjacent vertices as unavailable
for (int adjacent : graph.get(u)) {
if (result[adjacent] != -1) {
available[result[adjacent]] = true;
}
}

// Find the first available color
int cr;
for (cr = 0; cr < V; cr++) {
if (!available[cr]) {
break;
}
}

// Assign the found color to vertex u
result[u] = cr;

// Reset the available array for the next iteration
for (int adjacent : graph.get(u)) {
if (result[adjacent] != -1) {
available[result[adjacent]] = false;
}
}
}

// Print the result
System.out.println("Vertex\tColor");
for (int u = 0; u < V; u++) {
System.out.println(u + "\t" + result[u]);
}
}

public static void main(String[] args) {
// Number of vertices
int V = 4;

// Adjacency list representing the graph
List<List<Integer>> graph = new ArrayList<>();
for (int i = 0; i < V; i++) {
graph.add(new ArrayList<>());
}

// Define the edges of the graph
graph.get(0).add(1); // Edge A-B
graph.get(0).add(2); // Edge A-C
graph.get(1).add(0); // Edge B-A
graph.get(1).add(3); // Edge B-D
graph.get(2).add(0); // Edge C-A
graph.get(2).add(3); // Edge C-D
graph.get(3).add(1); // Edge D-B
graph.get(3).add(2); // Edge D-C

// Call the greedy coloring function
greedyGraphColoring(graph, V);
}
}


Summary:​

Graph coloring is the process of assigning colors to vertices of a graph such that no two adjacent vertices share the same color. It has practical applications in areas like scheduling, register allocation, and map coloring. The problem is NP-complete, meaning there is no known efficient algorithm for finding the minimum number of colors. However, the greedy algorithm offers an approximation by assigning colors sequentially to each vertex while avoiding conflicts. Though it doesn't guarantee the minimum number of colors, it ensures an upper bound of d+1 colors, where d is the maximum degree of any vertex in the graph.