Skip to main content

N Queen Recursion

N Queen Problem | Return all Distinct Solutions to the N-Queens Puzzle

  • Problem Statement: The n-queens is the problem of placing n queens on n × n chessboard such that no two queens can attack each other. Given an integer n, return all distinct solutions to the n -queens puzzle. Each solution contains a distinct boards configuration of the queen's placement, where ‘Q’ and ‘.’ indicate queen and empty space respectively.
#include <bits/stdc++.h>
using namespace std;
class Solution {
public:
bool isSafe1(int row, int col, vector < string > board, int n) {
// check upper element
int duprow = row;
int dupcol = col;

while (row >= 0 && col >= 0) {
if (board[row][col] == 'Q')
return false;
row--;
col--;
}

col = dupcol;
row = duprow;
while (col >= 0) {
if (board[row][col] == 'Q')
return false;
col--;
}

row = duprow;
col = dupcol;
while (row < n && col >= 0) {
if (board[row][col] == 'Q')
return false;
row++;
col--;
}
return true;
}

public:
void solve(int col, vector < string > & board, vector < vector < string >> & ans, int n) {
if (col == n) {
ans.push_back(board);
return;
}
for (int row = 0; row < n; row++) {
if (isSafe1(row, col, board, n)) {
board[row][col] = 'Q';
solve(col + 1, board, ans, n);
board[row][col] = '.';
}
}
}

public:
vector < vector < string >> solveNQueens(int n) {
vector < vector < string >> ans;
vector < string > board(n);
string s(n, '.');
for (int i = 0; i < n; i++) {
board[i] = s;
}
solve(0, board, ans, n);
return ans;
}
};
int main() {
int n = 4; // we are taking 4*4 grid and 4 queens
Solution obj;
vector < vector < string >> ans = obj.solveNQueens(n);
for (int i = 0; i < ans.size(); i++) {
cout << "Arrangement " << i + 1 << "\n";
for (int j = 0; j < ans[0].size(); j++) {
cout << ans[i][j];
cout << endl;
}
cout << endl;
}
return 0;
}